Intermediate Code Generation
Part I

Chapter 6: Intermediate Representations

Slides adapted from:
© Robert van Engelen, Florida State University
Intermediate Representations

- **Graphical representations** (e.g. abstract syntax tree, DAGs)
- **Three-address code** (e.g. *triples* and *quads*):
 \[x = y \text{ op } z \]
- **Two-address code**:
 \[x = \text{ op } y \]
 which is the same as \[x = x \text{ op } y \]
- **Postfix notation**: operations on values stored on operand stack (similar to JVM bytecode)
S-Attributed SDD for Generating Abstract Syntax Trees

<table>
<thead>
<tr>
<th>Production</th>
<th>Semantic Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \rightarrow \text{id} = E$</td>
<td>S.node = new Node(‘=’, Leaf(id, id.entry), E.node)</td>
</tr>
<tr>
<td>$E \rightarrow E_1 + E_2$</td>
<td>E.node = new Node(‘+’, E_1.node, E_2.node)</td>
</tr>
<tr>
<td>$E \rightarrow E_1 * E_2$</td>
<td>E.node = new Node(‘*’, E_1.node, E_2.node)</td>
</tr>
<tr>
<td>$E \rightarrow - E_1$</td>
<td>E.node = new Node(‘uminus’, E_1.node)</td>
</tr>
<tr>
<td>$E \rightarrow (E_1)$</td>
<td>E.node = E_1.node</td>
</tr>
<tr>
<td>$E \rightarrow \text{id}$</td>
<td>E.Node = new Leaf(id, id.entry)</td>
</tr>
</tbody>
</table>
Pros: easy restructuring of code and/or expressions for intermediate code optimization
Cons: memory intensive
Directed Acyclic Graphs

- Directed acyclic graphs (DAGs) identify and uniquely represent common sub-expressions of an abstract syntax tree
- Used to generate efficient code
Directed Acyclic Graphs for Abstract Syntax Trees

\[a = b \times -c + b \times -c \]
Directed Acyclic Graphs
for Abstract Syntax Trees

\[a + a \ast (b - c) + (b - c) \ast d \]
S-Attributed SDD for Generating DAGs

<table>
<thead>
<tr>
<th>Production</th>
<th>Semantic Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E \rightarrow E_1 + T$</td>
<td>E.node = <code>new Node</code>('+', E_1.node, T.node)</td>
</tr>
<tr>
<td>$E \rightarrow E_1 - T$</td>
<td>E.node = <code>new Node</code>('-', E_1.node, T.node)</td>
</tr>
<tr>
<td>$E \rightarrow T$</td>
<td>E.node = T.node</td>
</tr>
<tr>
<td>$T \rightarrow (E)$</td>
<td>T.node = E.node</td>
</tr>
<tr>
<td>$T \rightarrow id$</td>
<td>T.node = <code>new Leaf</code>(<code>id</code>, <code>id</code>.entry)</td>
</tr>
<tr>
<td>$T \rightarrow num$</td>
<td>T.node = <code>new Leaf</code>(<code>num</code>, <code>num</code>.val)</td>
</tr>
</tbody>
</table>
Value-Number Representation for DAGs

\[i = i + 10 \]

Value number of children

To symbol table entry for \(i \)
Value-Number Construction Method

• Use **signature** \(\langle op, lc, rc \rangle\) for nodes, where
 – \(op\) is a label
 – \(lc, rc\) are value numbers
 – \(rc\) is null for leaf nodes

• To construct a new node
 – Use signature to search the array and return the **value number** if found
 – Create new entry otherwise
Three-Address Code

- In three-address code (TAC or 3AC) instructions have at most one operator in the right hand side.
- When translating, compiler needs to generate temporary names.

\[
x + y * z \quad \Rightarrow \quad t_1 = y * z \quad \text{and} \quad t_2 = x + t_1
\]
Three-Address Code

\[a = b \cdot -c + b \cdot -c \]

\[
\begin{align*}
 t_1 &= -c \\
 t_2 &= b \cdot t_1 \\
 t_3 &= -c \\
 t_4 &= b \cdot t_3 \\
 t_5 &= t_2 + t_4 \\
 a &= t_5
\end{align*}
\]

From abstract syntax tree

\[
\begin{align*}
 t_1 &= -c \\
 t_2 &= b \cdot t_1 \\
 t_3 &= -c \\
 t_5 &= t_2 + t_2 \\
 a &= t_5
\end{align*}
\]

From DAG representation of abstract syntax tree
Addresses and Labels

• In 3AC an **address** can be
 – A name: an identifier from source program, or else pointer to its table entry
 – A constant
 – A compiler-generated temporary

• Symbolic **labels** (index of instructions) used to alter control flow
Three-Address Statements

- Assignment (binary): \(x = y \ op \ z \)
- Assignment (unary): \(x = op \ y \)
- Copy statement: \(x = y \)
Three-Address Statements

• Unconditional jump: \texttt{goto lab}

• Conditional jump: \texttt{if x goto lab, ifFalse x goto lab}

• Conditional jump: \texttt{if x relop y goto lab}

• Indexed assignment: \(x = y[i], x[i] = y \)

• Pointer assignment: \(x = &y, x = *y, *x = y \)
Three-Address Statements

- Procedure call:
 \[
 \text{param } x_1 \\
 \text{param } x_2 \\
 \ldots \\
 \text{param } x_n \\
 \text{call } p, n
 \]

- Assignment + call: \[y = \text{call } p, n \]
Implementation of 3AC: Quadruples

- 3AC instructions represented as data structures called quadruples
- Quadruples have four fields
 - \(op, \ arg_1, \ arg_2, \ result \)
- Some instructions use a proper subset of these fields
Example

\[a = b(-c) + b(-c) \]

\[
\begin{align*}
 t_1 &= \text{minus } c \\
 t_2 &= b \times t_1 \\
 t_3 &= \text{minus } c \\
 t_4 &= b \times t_3 \\
 t_5 &= t_2 + t_4 \\
 a &= t_5
\end{align*}
\]
Example

\[t_1 = \text{minus } c \]
\[t_2 = b \times t_1 \]
\[t_3 = \text{minus } c \]
\[t_4 = b \times t_3 \]
\[t_5 = t_2 + t_4 \]
\[a = t_5 \]

Quads (quadruples)

<table>
<thead>
<tr>
<th>Op</th>
<th>Arg1</th>
<th>Arg2</th>
<th>Res</th>
</tr>
</thead>
<tbody>
<tr>
<td>minus</td>
<td>c</td>
<td></td>
<td>(t_1)</td>
</tr>
<tr>
<td>*</td>
<td>b</td>
<td>(t_1)</td>
<td>(t_2)</td>
</tr>
<tr>
<td>minus</td>
<td>c</td>
<td></td>
<td>(t_3)</td>
</tr>
<tr>
<td>*</td>
<td>b</td>
<td>(t_3)</td>
<td>(t_4)</td>
</tr>
<tr>
<td>+</td>
<td>(t_2)</td>
<td>(t_4)</td>
<td>(t_5)</td>
</tr>
<tr>
<td>=</td>
<td>(t_5)</td>
<td></td>
<td>(a)</td>
</tr>
</tbody>
</table>

Pros: easy to rearrange code for global optimization
Cons: lots of temporaries
Implementation of 3AC: Triples

• Triples are an alternative representation for 3AC instructions using three fields
 – op, arg_1, arg_2

• We refer to the result of an operation by its **position**, rather than by an explicit temporary name
Example

$t_1 = \text{minus } c$
$t_2 = b \times t_1$
$t_3 = \text{minus } c$
$t_4 = b \times t_3$
$t_5 = t_2 + t_4$
$a = t_5$

Pros: temporaries are implicit
Cons: difficult to rearrange code
Implementation of 3AC:

Indirect Triples

<table>
<thead>
<tr>
<th>#</th>
<th>Stmt</th>
<th>Alias</th>
<th>Op</th>
<th>Arg1</th>
<th>Arg2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>(14)</td>
<td>(14)</td>
<td>minus</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>(15)</td>
<td>(15)</td>
<td>*</td>
<td>b</td>
<td>(14)</td>
</tr>
<tr>
<td>(2)</td>
<td>(16)</td>
<td>(16)</td>
<td>minus</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>(17)</td>
<td>(17)</td>
<td>*</td>
<td>b</td>
<td>(16)</td>
</tr>
<tr>
<td>(4)</td>
<td>(18)</td>
<td>(18)</td>
<td>+</td>
<td>(15)</td>
<td>(17)</td>
</tr>
<tr>
<td>(5)</td>
<td>(19)</td>
<td>(19)</td>
<td>=</td>
<td>a</td>
<td>(18)</td>
</tr>
</tbody>
</table>

Instructions

Triple container

Pro: temporaries are implicit & easier to rearrange code
Type Expressions

- Types have internal structures, which are represented by *type expressions*

\[
\text{int}[2][3]
\]

```
array
  2
  array
  3
    int
```
Graph Representations for Type Expressions

int *f(char*,char*)

Tree form

DAG
Cyclic Graph Representations

```c
struct Node
{
    int val;
    struct Node *next;
};
```

Cyclic graph
Recursive definition for Type Expressions

- *Basic types*, such as `int`, `boolean`, and `void`
- *Type names*, such as typedefs in C and named types in Pascal
- *Array* type constructors applied to an integer number and a type expression
- *Record* type constructors applied to the field names and their types
Recursive definition for Type Expressions

- *Pointer* type constructor, applied to a type expression
- $s \rightarrow t$ denotes function from type s to type t
- Cartesian product $s \times t$ of type expressions, used to represent list or tuple of types (function parameters)
- Variables whose values are type expressions
Name Equivalence

• Each *type name* is a distinct type, even when the associated type expressions are the same
• Types are identical only if names match
• Used in Pascal (inconsistently)

```
type link = ^node;
var next : link;
  last : link;
  p : ^node;
  q, r : ^node;
```

With name equivalence in Pascal:
```
p ≠ next
p ≠ last
p = q = r
next = last
```
Structural Equivalence of Type Expressions

- Two types are the same if they are *structurally equivalent*
- Used in C, Java, C#
Structural Equivalence of Type Expressions

- Two structurally equivalent types receive the same pointer address when constructing graphs by sharing nodes

```
struct Node
{
    int val;
    struct Node *next;
};
struct Node s, *p;

... p = &s; // OK
... *p = s; // OK
```
Constructing Type Graphs in Bison

Type *mkint()
construct int node if not already constructed

Type *mkarr(Type*,int)
construct array-of-type node if not already constructed

Type *mkptr(Type*)
construct pointer-of-type node if not already constructed
Constructing Type Graphs in Bison

%union
{ Symbol *sym;
 int num;
 Type *typ;
}
%token INT
%token <sym> ID
%token <num> NUM
%type <typ> type
%
decl : type ID { addtype($2, $1); }
 | type ID ‘[’ NUM ‘]’ { addtype($2, mkarr($1, $4)); }
 ;
type : INT { $$ = mkint(); }
 | type ‘*’ { $$ = mkptr($1); }
 ;
Type Expression and Storage Allocation

- Apply type expression and SDT to determine amount of storage needed at run time

\[
\begin{align*}
D & \to T \text{id} \; D \mid \varepsilon \\
T & \to B \; C \mid \text{record} \; \{ \; D \; \} \\
B & \to \text{int} \mid \text{float} \\
C & \to \varepsilon \mid [\text{num}] \; C
\end{align*}
\]
Type Expression and Storage Allocation

• Synthesized attribute \textit{type} : type expression
• Synthesized attribute \textit{width} : number of storage units needed for the type
• Inherited attributes \textit{t} and \textit{w} : used to pass type and width information to type constructors
Type Expression
and Storage Allocation

\[
T \rightarrow B \quad \{ \ C.t = B.type; \ C.w = B.width; \ \}
\]

\[
C \quad \{ \ T.type = C.type; \ T.width = C.width; \ \}
\]

\[
B \rightarrow \text{int} \quad \{ \ B.type = \text{integer}; \ B.width = 4; \ \}
\]

\[
B \rightarrow \text{float} \quad \{ \ B.type = \text{float}; \ B.width = 8; \ \}
\]

\[
C \rightarrow \varepsilon \quad \{ \ C.type = C.t; \ C.width = C.w; \ \}
\]

\[
C \rightarrow [\text{num}] \quad \{ \ C_1.t = C.t; \ C_1.w = C.w; \ \}
\]

\[
C_1 \quad \{ \ C.type = \text{array}(\text{num}.value, C_1.type); \ C.width = \text{num}.value \times C_1.width; \ \}
\]
Type Expression and Storage Allocation

$\text{type} = \text{integer}$
$\text{width} = 4$

int

$\text{array}(2, \text{array}(3, \text{integer}))$
$\text{width} = 24$

$\text{array}(3, \text{integer})$
$\text{width} = 12$

integer
$\text{width} = 4$

$t = \text{integer}$
$w = 4$
Sequences of Declarations

• Augment previous grammar by accounting for sequences of declarations, distributed within some block

• Use nonterminal T as in previous SDT

• Use global variable $offset$ to keep track of next available relative address in central memory
Sequences of Declarations

\[P \rightarrow \{ \text{offset} = 0; \} \; D \]
\[D \rightarrow T \; \text{id} \; ; \{ \text{top.put(id.lexeme, T.type, offset);} \]
\[\quad \text{offset} = \text{offset} + T.width; \; \} \; D_1 \]
\[D \rightarrow \varepsilon \]
Fields in Records / Classes

• Use the offset technique also for records and classes (class methods do not affect space allocation)
• Field records must be distinct within the same structure
• Offset is computed relative to the area record
Fields in Records / Classes

• Example:

```plaintext
float x;
record { float x; float y; } p;
record { int tag; float x; float y; } q;
...

x = p.x + q.x;
```
Fields in Records / Classes

• Augment previous declaration grammar with rule \(T \rightarrow \text{record} \ {D} \)

• Use SDT

\[
T \rightarrow \text{record} \ {'} \quad \{ \begin{array}{l}
\text{Env.push(top); top = new Env();} \\
\text{Stack.push(offset); offset = 0;}
\end{array} \} \\
D \ {'} \quad \{ \begin{array}{l}
T.type = \text{record}(top); \\
T.width = offset; \quad \text{top = Env.pop();} \\
offset = \text{Stack.pop();}
\end{array} \}
\]
Translation of Expressions

- Translation of assignment statements involving arithmetic expressions in 3AC
- Used attributes (all synthesized)
 - `code` to store 3AC
 - `addr` to denote the memory address (symbol table entry or temporary) that will hold the computed value for a sub-expression
 - `lexeme` to denote name of identifier token
Translation of Expressions

• Used operators
 – *top* is current symbol table
 – *get()* retrieves symbol table entry
 – *gen()* generates 3AC instructions
 – **new Temp()** generates a fresh temporary name
Translation of Expressions

<table>
<thead>
<tr>
<th>Productions</th>
<th>Semantic rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \rightarrow \text{id} = E;$</td>
<td>$S\text{.code} = E\text{.code} \parallel \text{gen(top.get(id.lexeme) ‘=’ E.addr)}$</td>
</tr>
</tbody>
</table>
| $E \rightarrow E_1 + E_2$ | $E\text{.addr} = \text{new Temp}();$
| | $E\text{.code} = E_1\text{.code} \parallel E_2\text{.code} \parallel$
| | $\quad \text{gen}(E\text{.addr ‘=’ E}_1\text{.addr ‘+’ E}_2\text{.addr})$ |
| $E \rightarrow E_1 * E_2$ | $E\text{.addr} = \text{new Temp}();$
| | $E\text{.code} = E_1\text{.code} \parallel E_2\text{.code} \parallel$
| | $\quad \text{gen}(E\text{.addr ‘=’ E}_1\text{.addr ‘*’ E}_2\text{.addr})$ |
| $E \rightarrow - E_1$ | $E\text{.addr} = \text{new Temp}();$
| | $E\text{.code} = E_1\text{.code} \parallel \text{gen}(E\text{.addr ‘=’ ‘minus’ E}_1\text{.addr})$ |
| $E \rightarrow (E_1)$ | $E\text{.addr} = E_1\text{.addr}$
| | $E\text{.code} = E_1\text{.code}$ |
| $E \rightarrow \text{id}$ | $E\text{.addr} = \text{top.get(id.lexeme)}$
| | $E\text{.code} = ‘’$ |
Translation of Expressions

\[a = b + -c ; \]

\[t1 = \text{minus } c \]
\[t2 = b + t1 \]
\[a = t2 \]
Translation of Expressions

\[S \rightarrow id \ E \ E + E ; \]

- \(id \rightarrow addr = b \)
 \(code = "\)

- \(id \rightarrow addr = t1 \)
 \(code = 't1 = minus c' \)
- \(addr = t2 \)
 \(code = 't2 = b + t1' \)
- \(addr = a \)
 \(code = 't2 = b + t1' \)
- \(addr = a \)
 \(code = 't1 = minus c' \)
- \(addr = c \)
 \(code = "\)
Incremental Translation

- Attribute *code* not used: instructions generated as a stream by recursive calls to `gen()

 - Generate only the new 3AC instructions
 - Append to the sequence of instructions generated so far
Incremental Translation

<table>
<thead>
<tr>
<th>Productions</th>
<th>Semantic rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \rightarrow \text{id} = E ;$</td>
<td>$\text{gen(top.get(id.lexeme) } \text{‘=} \text{ E.addr)}$</td>
</tr>
<tr>
<td>$E \rightarrow E_1 + E_2$</td>
<td>$E.addr = \text{new Temp();}$</td>
</tr>
<tr>
<td>$E \rightarrow E_1 * E_2$</td>
<td>$\text{gen(E.addr } \text{‘=} \text{ E_1.addr } \text{‘+’ E_2.addr)}$</td>
</tr>
<tr>
<td>$E \rightarrow - E_1$</td>
<td>$E.addr = \text{new Temp();}$</td>
</tr>
<tr>
<td>$E \rightarrow (E_1)$</td>
<td>$\text{gen(E.addr } \text{‘=} \text{ ‘minus’ E_1.addr)}$</td>
</tr>
<tr>
<td>$E \rightarrow \text{id}$</td>
<td>$E.addr = E_1.addr$</td>
</tr>
<tr>
<td></td>
<td>$E.addr = \text{top.get(id.lexeme)}$</td>
</tr>
</tbody>
</table>
Addressing Array Elements

- Compile-time addressing of arrays can be applied only when array size is known
- When array size is dynamic, addressing must be evaluated as program executes
- We use translation into 3AC to evaluate addressing at run-time
Addressing Array Elements

- Row-major order for storing multi-dimensional arrays; zero-addressing

![Diagram showing array indexing and row-major order]

- `a[1][0]`: Array element at row 1, column 0.
- `c(a)`: Base address of the array `a`.
- Rows 0, 1, 2 labeled for demonstration.
Addressing Array Elements

- Row-major order vs. column-major order

\[a[2][3] : \]

<table>
<thead>
<tr>
<th>(c(a))</th>
<th>(c(a))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a[0][0])</td>
<td>(a[0][0])</td>
</tr>
<tr>
<td>(a[0][1])</td>
<td>(a[1][0])</td>
</tr>
<tr>
<td>(a[0][2])</td>
<td>(a[0][1])</td>
</tr>
<tr>
<td>(a[1][0])</td>
<td>(a[1][1])</td>
</tr>
<tr>
<td>(a[1][1])</td>
<td>(a[0][2])</td>
</tr>
<tr>
<td>(a[1][2])</td>
<td>(a[1][2])</td>
</tr>
</tbody>
</table>

Row-major Column-major
Addressing Array Elements

• Array a : one dimension
 – Base address: $c(a)$
 – Type width: w

• Address polynomial
 – $a[i]$ located at $c(a) + i \times w$
Addressing Array Elements

• Array a : two dimensions
 – Row width: w_1
 – Element width : w_2

• Address polynomial
 – $a[i_1,i_2]$ located at
 $c(a) + i_1 \times w_1 + i_2 \times w_2$
Addressing Array Elements

- Array $a : k$ dimensions
 - Generalized widths (lower dim components):
 $w_j, 1 \leq j \leq k$

- Address polynomial
 - $a[i_1, \ldots, i_k]$ located at
 $c(a) + i_1 \times w_1 + i_2 \times w_2 + \ldots + i_k \times w_k$
Addressing Array Elements

- **Array** a: two dimensions
 - Number of elements in dimension 1: n_1 (column)
 - Number of elements in dimension 2: n_2 (row)
 - Element width: w

- **Address polynomial**
 - $a[i_1, i_2]$ located at

 $$c(a) + (i_1 \times n_2 + i_2) \times w$$
Addressing Array Elements

• Array $a : k$ dimensions
 – Number of elements in dimension j: n_j
 – Element width: w

• Address polynomial
 – $a[i_1, \ldots, i_k] \text{ located at }$

 $c(a) +$

 $(\ldots ((i_1 \times n_2 + i_2) \times n_3 + i_3) \ldots) \times n_k + i_k) \times w$
Addressing Array Elements

- Other addressing conventions (Pascal)

\[
A : \text{array } [10..20] \text{ of integer};
\]
\[
\ldots = A[i] = base_A + (i - low) \times w = i \times w + c
\]
where \(c = base_A - low \times w\)
with \(low = 10, w = 4\)

\[
t1 = c // c = base_A - 10 \times 4
\]
\[
t2 = i \times 4
\]
\[
t3 = t1[t2]
\]
\[
\ldots = t3
\]
Addressing Array Elements

- Other addressing conventions (two dimensions)

\[
A : \text{array } [1..2,1..3] \text{ of integer; (Row-major)}
\]
\[
... = A[i,j] = base_A + ((i - low_1) * n_2 + j - low_2) * w
\]
\[
= ((i * n_2) + j) * w + c
\]
where \(c = base_A - ((low_1 * n_2) + low_2) * w \)
with \(low_1 = 1, low_2 = 1, n_2 = 3, w = 4 \)

\[
t1 := i * 3
\]
\[
t1 := t1 + j
\]
\[
t2 := c \quad // c = base_A - (1 * 3 + 1) * 4
\]
\[
t3 := t1 * 4
\]
\[
t4 := t2[t3]
\]
\[
... := t4
\]
Addressing Array Elements

• Assume arrays
 – X with dimension $d_1 \times d_2$
 – Y with dimension $d_3 \times d_4$

• Consider the assignment statement

\[
X[i, j] = Y[i + j, k] + z
\]
Addressing Array Elements

\[X[i,j] = Y[i+j,k] + z \]

t1 = i * d2
t2 = t1 + j
t3 = c(X)
t4 = t2 * width(X)
t5 = i + j
t6 = t5 * d4
t7 = t6 + k
t8 = c(Y)
t9 = t7 * width(Y)
t10 = t8[t9]
t11 = t10 + z
t3[t4] = t11
Addressing Array Elements

- Apply type expression and SDT to determine offsets for array indexing

\[
\begin{align*}
S & \rightarrow L = E \\
E & \rightarrow E + E \\
E & \rightarrow (E) \\
E & \rightarrow L \\
L & \rightarrow \text{Elist} \\
L & \rightarrow \text{id} \\
\text{Elist} & \rightarrow \text{Elist} , E \\
\text{Elist} & \rightarrow \text{id} [E
\end{align*}
\]
\[X[i, j] = Y[i + j, k] + z \]
Addressing Array Elements

- **E.place**: temp or symbol entry holding value obtained in computation of expression
- **L.place**: temp holding base address of array
- **L.offset**: temp holding array offset
- **Elist.array**: symbol table entry for array
- **Elist.place**: temporary for offset computation
- **Elist.dim**: dimension index
Addressing Array Elements

<table>
<thead>
<tr>
<th>Productions</th>
<th>Semantic rules</th>
</tr>
</thead>
</table>
| $S \rightarrow L = E$ | if ($L.offset == null$)
| | \hspace{1cm} gen($L.place \ '==' \ E.place$); |
| | else \hspace{1cm} gen($L.place \ '[' \ L.offset \ ']' \ '==' \ E.place$); |
| $E \rightarrow E_1 + E_2$ | $E.place = newlabel();$
| | gen($E.place \ '==' \ E_1.place \ '+' \ E_2.place$); |
| $E \rightarrow (E_1)$ | $E.place = E_1.place$; |
Addressing Array Elements

<table>
<thead>
<tr>
<th>Productions</th>
<th>Semantic rules</th>
</tr>
</thead>
</table>
| \[E \rightarrow L \] | if \((L\.offset == null) \)
\[E\.place = L\.place; \]
else
\{
 \[E\.place = newlabel(); \]
 gen\((E\.place \text{ '=}\)
 \[L\.place [' L\.offset '] \); \}
| \[L \rightarrow id \] | \[L\.place = id\.place; \]
\[L\.offset = null; \] |
Addressing Array Elements

<table>
<thead>
<tr>
<th>Productions</th>
<th>Semantic rules</th>
</tr>
</thead>
</table>
| $L \rightarrow Elist$ | $L.place = newlabel();$
| | $L.offset = newlabel();$
| | $\text{gen}(L.place \ '=$ \ c(Elist.array));$
| | $\text{gen}(L.offset \ '=$$
| | $Elist.place \ '*' \ \text{width}(Elist.array);$|
| $Elist \rightarrow Elist_1, E$ | $t = newlabel();$
| | $m = Elist_1.dim + 1;$
| | $\text{gen}(t \ '=$ \ Elist_1.place \ '*' \ \text{limit}(Elist_1.array, m));$
| | $\text{gen}(t \ '=$ \ t \ '+' \ E.place;$
| | $Elist.array = Elist_1.array;$
| | $Elist.place = t;$
| | $Elist.dim = m;$ |
Addressing Array Elements

<table>
<thead>
<tr>
<th>Productions</th>
<th>Semantic rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Elist \rightarrow \textbf{id} \ [\ E$</td>
<td>$Elist.array = \textbf{id}.place$;</td>
</tr>
<tr>
<td></td>
<td>$Elist.place = E.place$;</td>
</tr>
<tr>
<td></td>
<td>$Elist.dim = 1$;</td>
</tr>
</tbody>
</table>
\[X[i, j] = Y[i + j, k] + z \]
Addressing Array Elements

\[
S \rightarrow \text{id} = E ; \\
| \ L = E ; \\
E \rightarrow E + E \\
| \ \text{id} \\
| \ L \\
L \rightarrow \text{id} [E] \\
| \ L [E]
\]
Addressing Array Elements

- $E.addr$: temp holding value of E
- $L.addr$: temp holding value obtained in computation of offset
- $L.array$: pointer to symbol table entry for array
 - $L.array.base$: base address of array
 - $L.array.type.width$: size of array elements
 - $L.array.type.elem$: type of array elements
- $L.type$: type of subarray generated by L
Addressing Array Elements

\[
S \rightarrow \text{id} = E ; \\
\{ \text{gen}(\text{top.get(id.lexeme)} \ '=?' \ E.\text{addr}); \}
\]

\[
S \rightarrow L = E ; \\
\{ \text{gen}(L.\text{array.base} \ '[' L.\text{addr} ']' \ '=?' \ E.\text{addr}); \}
\]

\[
E \rightarrow E_1 + E_2 \\
\{ E.\text{addr} = \text{new Temp}(); \\
\text{gen}(E.\text{addr} \ '=?' \ E_1.\text{addr} \ '+' \ E_2.\text{addr}); \}
\]

\[
E \rightarrow \text{id} \\
\{ E.\text{addr} = \text{top.get(id.lexeme)}; \}
\]

\[
E \rightarrow L \\
\{ E.\text{addr} = \text{new Temp}(); \\
\text{gen}(E.\text{addr} \ '=?' \ L.\text{array.base} \ '[' L.\text{addr} ']'); \}
\]
Addressing Array Elements

\[L \to \text{id} \ [\ E \] \quad \text{\{ } \quad L.\text{array} = \text{top.get(id.lexeme)}; \]
\[\text{L.type} = \text{L.array.type.elem}; \]
\[L.\text{addr} = \text{new Temp}(); \]
\[\text{gen}(L.\text{addr} \ ']=' \ E.\text{addr} \ '*' \]
\[L.\text{type.width}); \ \text{\}} \]

\[L \to L_1 \ [\ E \] \quad \text{\{ } \quad L.\text{array} = L_1.\text{array}; \]
\[L.\text{type} = L_1.\text{type.elem}; \]
\[t = \text{new Temp}(); \]
\[L.\text{addr} = \text{new Temp}(); \]
\[\text{gen}(t \ ']=' \ E.\text{addr} \ '*' \ L.\text{type.width}); \]
\[\text{gen}(L.\text{addr} \ ']=' \ L_1.\text{addr} \ '+' \ t); \ \text{\}} \]
Addressing Array Elements

c + a[i][j] ;

\[
\begin{align*}
t1 &= i \times 12 \\
t2 &= j \times 4 \\
t3 &= t1 + t2 \\
t4 &= a[t3] \\
t5 &= c + t4
\end{align*}
\]
\[E.addr = t5 \]

\[E.addr = c + E.addr = t4 \]

\[L.array = a \]
\[L.type = integer \]
\[L.addr = t3 \]

\[L.array = a \]
\[L.type = array(3, integer) \]
\[L.addr = t1 \]

\[L.type = array(2, \]
\[array(3, integer) \]

\[E.addr = j \]
\[j \]

\[E.addr = i \]
\[i \]