When we have to solve a machine learning task:

- there are different algorithms/classes
- algorithms have parameters

Question: how do we choose a algorithm or value of the parameters?
Example

Regression task, $\mathcal{X} = \mathbb{R}, \mathcal{Y} = \mathbb{R}$

Decision: $\mathcal{H} = \text{polynomials}$.

How do we pick the degree d of the polynomial?
What about considering the empirical risk of best hypothesis of various degrees (e.g., 2, 3, 10)?

Best hypotheses for degree = 2, 3, and 10
Empirical risk is not enough!

We will see 2 approaches:
- model selection using Structural Risk Minimization (SRM)
- validation
What about considering the empirical risk of best hypothesis of various degrees (e.g., 2, 3, 10)?

Best hypotheses for degree = 2, 3, and 10

Degree 2

Empirical risk is not enough!

We will see 2 approaches:

- model selection using Structural Risk Minimization (SRM)
- validation
What about considering the empirical risk of best hypothesis of various degrees (e.g., 2, 3, 10)?

Best hypotheses for degree = 2, 3, and 10

Empirical risk is not enough!

We will see 2 approaches:
- model selection using Structural Risk Minimization (SRM)
- validation
What about considering the empirical risk of best hypothesis of various degrees (e.g., 2, 3, 10)?

Best hypotheses for degree = 2, 3, and 10

Empirical risk is not enough!

We will see 2 approaches:
- model selection using Structural Risk Minimization (SRM)
- validation
Model Selection using SRM

SRM can be used to tune tradeoff between bias and complexity

Let $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$, where each \mathcal{H}_n:

- has uniform convergence property
- sample complexity of \mathcal{H}_n is of the type:

$$m_{\mathcal{H}_n}(\epsilon, \delta) \leq \frac{g(n) \log(1/\delta)}{\epsilon^2}$$

where $g : \mathbb{N} \rightarrow \mathbb{R}$ is some monotonically increasing function.

Example:

- $\mathcal{H}_d =$ set of polyomials of degree at most d, for $d \in \mathbb{N}$
SRM

SRM follows a *bound minimization* approach.

Bound: with probability $\geq 1 - \delta$, for every $d \in \mathbb{N}$ and $h \in \mathcal{H}_d$

\[
L_D(h) \leq L_S(h) + \sqrt{\frac{g(d)(\log(1/\delta) + 2 \log d + \log(\pi^2/6))}{m}}
\]

SRM rule: pick d and $h \in \mathcal{H}_d$ minimizing

\[
L_S(h) + \sqrt{\frac{g(d)(\log(1/\delta) + 2 \log d + \log(\pi^2/6))}{m}}
\]

Note: upper bound may be pessimistic.
Validation

Idea: once you pick an hypothesis, use new data to estimate its true error

Assume we have picked a predictor error (e.g., by ERM rule on a \mathcal{H}_d).

Let $V = (x_1, y_1), \ldots, (x_{m_v}, y_{m_v})$ be a set of fresh m_v samples from D

Assume the loss function is in $[0, 1]$. Then by Hoeffding inequality we have the following.

Proposition

For every $\delta \in (0, 1)$, with probability $\geq 1 - \delta$ (over the choice of V) we have

$$|L_V(h) - L_D(h)| \leq \sqrt{\frac{\log(2/\delta)}{2m_v}}$$
Assume:

- h has been picked from \mathcal{H}_d
- $\text{VCdim}(\mathcal{H}_d) = d$

Then (by fundamental theorem of learning):

$$L_D(h) \leq L_S(h) + \sqrt{C \frac{d + \log(1/\delta)}{m}}$$

where C is a constant.

From previous proposition:

$$L_D(h) \leq L_V(h) + \sqrt{\log(2/\delta)} \frac{1}{2m_V}$$

\Rightarrow if we pick $m_V \approx m$, the second bound is more accurate!
Note: possible only because we use *fresh* samples

In practice:

- we have only 1 dataset
- we split it into 2 parts:
 - training set
 - *hold out* set

A similar approach can be used for model selection...
Validation for Model Selection

Assume we have $\mathcal{H} = \bigcup_{i=1}^{r} \mathcal{H}_i$

Given a training set S, let h_i be the hypothesis obtained by ERM rule from \mathcal{H}_i using S

\Rightarrow how do we pick a final hypothesis from $\{h_1, h_2, \ldots, h_r\}$?

Validation set: $V = (x_1, y_1), \ldots, (x_{m_v}, y_{m_v})$ be a set of fresh m_v samples from D

\Rightarrow choose final hypothesis from $\{h_1, h_2, \ldots, h_r\}$ by ERM over validation set
Assume loss function is in $[0, 1]$. Then we have the following.

Proposition

With probability $\geq 1 - \delta$ over the choice of V we have

$$\forall h \in \{h_1, \ldots, h_r\} : |L_D(h) - L_V(h)| \leq \sqrt{\frac{\log(2r/\delta)}{2m_V}}$$

Example
Model-Selection Curve

Shows the training error and validation error as a function of the complexity of the model considered

Example

Training error decreases by validation error increases ⇒ overfitting
What if we have one or more parameters with values in \(\mathbb{R} \)?

- Start with a rough grid of values
- Plot the corresponding model-selection curve
- Based on the curve, zoom in to the correct regime
- Employ a finer grid to search over

Note: the empirical risk on the validation set *is not* an estimate of the true risk, in particular if choose among many models!

Question: how can we estimate the true risk after model selection?
Train-Validation-Test Split

Assume we have $\mathcal{H} = \bigcup_{i=1}^{r} \mathcal{H}_i$

Idea: instead of splitting data in 2 parts, divide into 3 parts

- **training set:** used to learn the best model h_i from each \mathcal{H}_i
- **validation set:** used to pick one hypothesis h from $\{h_1, h_2, \ldots, h_r\}$
- **test set:** used to estimate the true risk $L_D(h)$

\Rightarrow the estimate from the test set satisfies the proposition we have seen when we estimate $L_D(h)$ for 1 class

Note:

- the test set *is not involved* in the choice of h
- if after using the test set to estimate $L_D(h)$ we decide to choose another hypothesis (*because we have seen $L_D(h)$*)
 \Rightarrow we cannot use the test set again to estimate $L_D(h)$!
k-Fold Cross Validation

When data is not plentiful, we cannot afford to use a *fresh* validation set...

⇒ *k*-fold cross validation:

- partition (training) set into *k* folds of size \(m/k \)
- for each fold:
 - train on union of other folds
 - estimate error (for learned hypothesis) from the fold
- estimate of the true error = average of the estimated errors above

Lease-one-out cross validation: \(k = m \)

Often cross validation is used for model selection

- at the end, the final hypothesis is obtained from training on the entire training set
\textit{k}-Fold Cross Validation for Model Selection

\textbf{input:}

- training set $S = (x_1, y_1), \ldots, (x_m, y_m)$
- set of parameter values Θ
- learning algorithm A
- integer k

\textbf{partition} S into S_1, S_2, \ldots, S_k

\textbf{foreach} $\theta \in \Theta$

\textbf{for} $i = 1 \ldots k$

\hspace{1em} $h_{i, \theta} = A(S \setminus S_i; \theta)$

\hspace{1em} error(θ) = $\frac{1}{k} \sum_{i=1}^{k} L_{S_i}(h_{i, \theta})$

\textbf{output}

- $\theta^* = \text{argmin}_\theta [\text{error}(\theta)]$
- $h_{\theta^*} = A(S; \theta^*)$
[UML] Chapter 11