Machine Learning

Regularization and Feature Selection

Fabio Vandin November 13, 2017
Learning Model

• \(A \): learning algorithm for a machine learning task

• \(S \): \(m \) i.i.d. pairs \(z_i = (x_i, y_i), i = 1, \ldots, m \), with \(z_i \in Z = \mathcal{X} \times \mathcal{Y} \), generated from distribution \(\mathcal{D} \) \(\Rightarrow \) training set available to \(A \) to produce \(A(S) \);

• \(\mathcal{H} \): the hypothesis (or model) set for \(A \)

• loss function: \(\ell(h, (x, y)), \ell : \mathcal{H} \times Z \to \mathbb{R}^+ \)

• \(L_S(h) \): empirical risk or training error of hypothesis \(h \in \mathcal{H} \)

\[
L_S(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h, z_i)
\]

• \(L_D(h) \): true risk or generalization error of hypothesis \(h \in \mathcal{H} \):

\[
L_D(h) = \mathbb{E}_{z \in \mathcal{D}}[\ell(h, z)]
\]
Learning Paradigms

We would like A to produce $A(S)$ such that $L_D(A(S))$ is small, or at least close to the smallest generalization error $L_D(h^*)$ achievable by the “best” hypothesis h^* in \mathcal{H}:

$$h^* = \arg \min_{h \in \mathcal{H}} L_D(h)$$

We have seen two learning paradigms:

- Empirical Risk Minimization
- Structural Risk Minimization \Rightarrow Minimum Description Length
• Empirical Risk Minimization (ERM): pick

\[A(S) \in \arg \min_{h \in \mathcal{H}} L_S(h) \]

⇒ guarantees learning for PAC learnable \(\mathcal{H} \)

• Minimum Description Length: pick

\[A(S) \in \arg \min_{h \in \mathcal{H}} \left(L_S(h) + \sqrt{\frac{|h| + \ln(2/\delta)}{2m}} \right) \]

where \(|h|\) is the length of the description of \(h \).
⇒ considers trade-off between training error and complexity

We now see another learning paradigm.
Assume h is defined by a vector $\mathbf{w} = (w_1, \ldots, w_d)^T \in \mathbb{R}^d$ (e.g., linear models)

Regularization function $R : \mathbb{R}^d \rightarrow \mathbb{R}$

Regularized Loss Minimization (RLM): pick h obtained as

$$\arg \min_{\mathbf{w}} (L_S(\mathbf{w}) + R(\mathbf{w}))$$

Intuition: $R(\mathbf{w})$ is a “measure of complexity” of hypothesis h defined by \mathbf{w}

\Rightarrow regularization balances between low empirical risk and “less complex” hypotheses

We will see some of the most common regularization function
Tikhonov regularization

Regularization function: \(R(w) = \lambda \|w\|^2 \)

- \(\lambda \in \mathbb{R}, \lambda > 0 \)
- \(\ell_2 \) norm: \(\|w\|^2 = \sum_{i=1}^{d} w_i^2 \)

Therefore the learning rule is: pick

\[
A(S) = \arg \min_w \left(L_S(w) + \lambda \|w\|^2 \right)
\]

Intuition:
- \(\|w\|^2 \) measures the “complexity” of hypothesis defined by \(w \)
- \(\lambda \) regulates the tradeoff between the empirical risk \((L_S(w)) \) or overfitting and the complexity \((\|w\|^2) \) of the model we pick
Ridge Regression

Linear regression with squared loss + Tikhonov regularization
⇒ ridge regression

Linear regression with squared loss:

• given: training set $S = ((x_1, y_1), \ldots, (x_m, y_m))$, with $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$

• want: w which minimizes empirical risk:

$$w = \arg \min_w \frac{1}{m} \sum_{i=1}^{m} (\langle w, x_i \rangle - y_i)^2$$

equivalently, find w which minimizes the residual sum of squares $RSS(w)$

$$w = \arg \min_w RSS(w) = \arg \min_w \sum_{i=1}^{m} (\langle w, x_i \rangle - y_i)^2$$
Linear regression: pick

\[w = \arg \min_w \text{RSS}(w) = \arg \min_w \sum_{i=1}^m (\langle w, x_i \rangle - y_i)^2 \]

Ridge regression: pick

\[w = \arg \min_w \lambda \|w\|^2 + \sum_{i=1}^m (\langle w, x_i \rangle - y_i)^2 \]
RSS: Matrix Form

Let

\[X = \begin{bmatrix} \cdots & x_1 & \cdots \\ \cdots & x_2 & \cdots \\ \cdots & \vdots & \cdots \\ \cdots & x_m & \cdots \end{bmatrix} \]

\[X: \text{ design matrix} \]

\[y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} \]

\(\Rightarrow \) we have that RSS is

\[
\sum_{i=1}^{m} (\langle w, x_i \rangle - y_i)^2 = (y - Xw)^T (y - Xw)
\]
Linear regression: pick

$$\arg \min_w (y - Xw)^T (y - Xw)$$

Ridge regression: pick

$$\arg \min_w \lambda \|w\|^2 + (y - Xw)^T (y - Xw)$$
Want to find w which minimizes

$$f(w) = \lambda ||w||^2 + (y - Xw)^T (y - Xw).$$

How?

Compute gradient $\frac{\partial f(w)}{\partial w}$ of objective function w.r.t w and compare it to 0.

$$\frac{\partial f(w)}{\partial w} = 2\lambda w - 2X^T (y - Xw)$$

Then we need to find w such that

$$2\lambda w - 2X^T (y - Xw) = 0$$
\[2\lambda w - 2X^T(y - Xw) = 0 \]

is equivalent to

\[\left(\lambda I + X^TX \right) w = X^Ty \]

Note:

- \(X^TX \) is positive semidefinite
- \(\lambda I \) is positive definite

\[\Rightarrow \lambda I + X^TX \] is positive definite

\[\Rightarrow \lambda I + X^TX \] is invertible

Ridge regression solution:

\[w = \left(\lambda I + X^TX \right)^{-1} X^Ty \]
We’ll show: Tikhonov regularization makes the learner *stable* w.r.t. small perturbations of the training set, which in turn leads to small bounds on generalization error.

Informally: an algorithm \(A \) is *stable* if a small change of the training data (i.e., its input) \(S \) will lead to a small change of its output hypothesis.

Questions:
- what is a “small change of the training data”?
- what is a “small change of its output hypothesis”?
Stability

• “small change of the training data” = replace one sample!

Given $S = (z_1, \ldots, z_m)$ and additional example (i.e., pair instance label/target) z' let $S(i) = (z_1, \ldots, z_{i-1}, z', z_{i+1}, \ldots, z_m)$

• “small change of its output hypothesis” = on-average-replace-one-stable (OAROS)

Definition

Let $\epsilon : \mathbb{N} \to \mathbb{R}$ be a monotonically decreasing function. We say that a learning algorithm A is on-average-replace-one-stable OAROS with rate $\epsilon(m)$ if for every distribution \mathcal{D}:

$$E_{(S,z') \sim \mathcal{D}^{m+1}, i \sim U(m)}[\ell(A(S^{(i)}), z_i) - \ell(A(S), z_i)] \leq \epsilon(m)$$
Proposition

If algorithm A is OAROS with rate $\epsilon(m)$ then:

$$\mathbb{E}_{S \sim \mathcal{D}^m}[L_D(A(S)) - L_S(A(S))] \leq \epsilon(m)$$

Proof.

Since S and z' are both drawn i.i.d. from \mathcal{D}, we have that for every i:

$$\mathbb{E}_S[L_D(A(S))] = \mathbb{E}_{S,z'}[\ell(A(S), z')] = \mathbb{E}_{S,z'}[\ell(A(S^{(i)}), z_i)].$$

On the other hand we have:

$$\mathbb{E}_S[L_S(A(S))] = \mathbb{E}_{S,i}[\ell(A(S), z_i)].$$

The proof follows from the definition of stability.
Tikhonov Regularization is a Stabilizer

Proposition

Assume the loss function is convex and ρ-Lipschitz continuous. Then, the RLM rule with regularizer $\lambda \|w\|^2$ is OAROS with rate $\frac{2\rho}{\lambda m}$. It follows that for the RLM rule:

$$\mathbb{E}_{S \sim D^m}[L_D(A(S)) - L_S(A(S))] \leq \frac{2\rho}{\lambda m}$$

A function $f : \mathbb{R}^d \to \mathbb{R}$ is ρ-Lipschitz continuous if for every $w_1, w_2 \in \mathbb{R}^d$ we have that $\|f(w_1) - f(w_2)\| \leq \rho \|w_1 - w_2\|$
The Fitting-Stability Tradeoff

Note that

$$\mathbb{E}_S[L_D(A(S))] = \mathbb{E}_S[L_S(A(S))] + \mathbb{E}_S[L_D(A(S)) - L_S(A(S))]$$

Notes:

- $\mathbb{E}_S[L_S(A(S))]$: how well A fits the training set
- $\mathbb{E}_S[L_D(A(S)) - L_S(A(S))] = \text{overfitting}$, bounded by stability of A
- in Tikhonov regularization, λ controls tradeoff between the two terms

Questions:

- how do $L_S(A(S))$ and $||A(S)||^2 = ||w||^2$ vary as a function of λ?
- how may $\mathbb{E}_S[L_D(A(S)) - L_S(A(S))]$ change as a function of λ?

How do set λ?
Using the fitting-stability tradeoff decomposition and the result for convex, Lipschitz losses we can prove that knowing the properties (e.g., ρ in ρ-Lipschitz continuity, etc.) one can pick λ to guarantee that

$$\mathbb{E}_S[L_D(A(S))] \leq \min_{w \in \mathcal{H}} L_D(w) + \sqrt{\frac{c}{m}}$$

where $c > 0$ depends on the parameters of the loss function.

Question: how do we pick λ in practice?

Answer: validation!