(scritto del 3 luglio 2013)

\[A^3 \quad \text{Punti:} \quad A = (0, 1, -2) \]
\[B = (3, 2, 2) \]

\[\text{Retta:} \quad r : \begin{cases} x + 3y - 1 = 0 \\ z + 1 = 0 \end{cases} \]

(a) Determinare il punto \(A' \), proiezione ortogonale di \(A \) sulla retta \(r \).

\[\begin{cases} x = 1 \\ y = 0 \\ z = -1 \end{cases} \] \(\text{è un punto} \quad P = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \in r \)

\[\begin{cases} x = -2 \\ y = 1 \\ z = -1 \end{cases} \] \(\text{è un punto} \quad Q = \begin{pmatrix} -2 \\ 1 \\ -1 \end{pmatrix} \in r \)
\[\mathbf{v}_\pi = \mathbf{Q} - \mathbf{P} = \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix} \] è un vettore direttore della retta \(\pi \).

\[\mathbf{r} : \mathbf{X} = \mathbf{P} + \lambda \mathbf{v}_\pi \quad (\Rightarrow) \begin{cases} x = 1 - 3\lambda \\ y = 0 + \lambda \\ z = -1 + 0 \end{cases} \]

sono le coordinate di un generico p.t.o. della retta \(\pi \).

\[\mathbf{w} = \mathbf{X} - \mathbf{A} = \begin{pmatrix} 1 - 3\lambda \\ \lambda - 1 \\ -1 + 2 \end{pmatrix} = \begin{pmatrix} 1 - 3\lambda \\ \lambda - 1 \\ 1 \end{pmatrix} \]

\[\mathbf{v}_\pi \cdot \mathbf{w} = 0 \quad \Rightarrow \quad -3(1 - 3\lambda) + 1(\lambda - 1) + 0 = 0 \]

\[-3 + 9\lambda + \lambda - 1 = 0 \]

\[10\lambda = 4 , \quad \lambda = \frac{4}{10} = \frac{2}{5} \]

Si trova \(\mathbf{A}' = \begin{pmatrix} -\frac{1}{5} \\ \frac{2}{5} \\ -1 \end{pmatrix} \)

Un altro modo è il seguente:

Lezione 44 Pagina 2
$\vec{u}_n = (-3, 1, 0)$

$A = (0, 1, -2)$

Il piano π, piano **perpendicolare** alla retta r, passante per A.

$A' = \pi \cap r$

\vec{u}_n è un vettore **perpendicolare** al piano π, quindi l'equazione del piano π è:

$$\pi : -3x + 1 \cdot y + 0 \cdot z + d = 0$$

Dato che $A \in \pi$, sostituisco le coord. di A:

$$-3 \cdot 0 + 1 + d = 0$$

$$\Rightarrow d = -1$$

Quindi l'eq. del piano π è:

$$\pi : -3x + y - 1 = 0$$

A': $egin{cases} x + 3y - 1 = 0 \\ z + 1 = 0 \\ -3x + y - 1 = 0 \end{cases}$

risolvendo si trova il punto A'.
(b) Trovare l'eq. cartesiana del piano \(\sigma \) tale che la proiezione ortogonale di \(A \) su \(\sigma \) sia il pto \(B \) assegnato.

\[
A = (0, 1, -2) \quad \Rightarrow \quad B - A = (3, 1, 4) \quad \text{è un vettore perpendicolare al piano \(\sigma \).}
\]

\[
\Rightarrow \quad \sigma : 3x + y + 4z + d = 0
\]

Il termine noto \(d \) viene calcolato imponendo la condizione di passaggio per il punto \(B \):

\[
g + 2 + 8 + d = 0
\]

\[
\Rightarrow \quad d = -19
\]

\[
\Rightarrow \quad \sigma : 3x + y + 4z - 19 = 0
\]
(c) Fra le rette passanti per A e coplanari alla retta r si determini quella che ha distanza minima dal pto B.

L'insieme di tutte le rette passanti per A e coplanari alla retta r forma un piano π', che contiene la retta r e il punto A.

$$
\pi' \colon \begin{cases}
x + 3y - 1 = 0 \\
2 + 1 = 0
\end{cases}
$$

L'eq. del fascio di piani di asse r è:

$$
\lambda (x + 3y - 1) + \mu (2 + 1) = 0
$$

Impondo la condizione di passaggio per $A = (0, 1, -2)$

$$
\lambda (2) + \mu (-1) = 0
$$
\[2\lambda - \mu = 0\quad \Rightarrow\quad \mu = 2\lambda\]

Quindi \(\lambda = 1,\quad \mu = 2\)

Il piano \(\pi\) cercato è:

\[1(\lambda + 3\mu - 1) + 2(\tau + 1) = 0\]

\[\Pi: \quad \lambda + 3\mu + 2\tau + 1 = 0\]

\[B = (3,\ 2,\ 2) \notin \Pi\]

La retta che stiamo cercando è quella che passa per \(A + B\), dove \(B\) è la proiezione ortogonale di \(B\) sul piano \(\Pi\).

\[\Rightarrow \quad \vec{m} = (1,\ 3,\ 2)\quad \text{è un vettore \perp \Pi}\]

La retta che passa per \(B\) ed è \perp al piano \(\Pi\) è:

\[X = B + t\vec{m} \quad \Rightarrow\quad \begin{cases} \lambda = 3 + t \\ \mu = 2 + 3t \\ \tau = 2 + 2t \end{cases}\]

Per trovare \(B\) metto a sistema con l’equazione del piano \(\Pi\):
\[B' : \begin{cases}
 x = 3 + t \\
 y = 2 + 3t \\
 z = 2 + 2t \\
 x + 3y + 2z + 1 = 0
\end{cases} \]

\[(3 + t) + 3(2 + 3t) + 2(2 + 2t) + 1 = 0 \]

\[\Rightarrow \ t = -1 \]

\[\Rightarrow \ B' = (2, -1, 0) \]

Troviamo la retta che passa per \(A \) e \(B' \):

\[B' - A = (2, -2, 2) \] vettore direzione della retta.

Le eq. della retta cercata sono:

\[x = A + \lambda (2, -2, 2) \]

\[\begin{cases}
 x = 0 + 2\lambda \\
 y = 1 - 2\lambda \\
 z = -2 + 2\lambda
\end{cases} \] (eq. parametriche della retta cercata)

(scritto del 9 settembre 2013)

\[\mathbb{R}^3 \]

Punti: \(A = (2, 0, 1) \)

\(B = (1, 2, -2) \)
Piano \(\pi \): \(x + 2y - z + 3 = 0 \)

(a) Trovare la lunghezza del segmento \(A'B' \), proiezione ortogonale del segmento \(AB \) sul piano \(\pi \).

Basta trovare i punti \(A' \) e \(B' \) che sono le proiezioni ortogonali di \(A \) e \(B \) sul piano \(\pi \).

\(\vec{m} = (1, 2, -1) \)

Retta per \(A \) parallela a \(\vec{m} \):

\[
\begin{align*}
\begin{cases}
x = 2 + t \\
y = 0 + 2t \\
z = 1 - t
\end{cases}
\Rightarrow A' = \left(\frac{4}{3}, -\frac{4}{3}, \frac{5}{3} \right)
\]

\(x + 2y - z + 3 = 0 \)

In modo analogo si trova \(B' = \left(-\frac{2}{3}, -\frac{4}{3}, -\frac{1}{3} \right) \)

\[
\text{dist}(A', B') = \| B' - A' \| = 2\sqrt{2}
\]
(5) Trovare l'eq. della retta \(l \subset \mathbb{R}^3 \),
formata dai punti \(P \in \mathbb{R}^3 \) tali che
\[\text{dist}(P, A) = \text{dist}(P, B). \]

\[P = (x, y, z) \]

\[\text{dist}(P, A) = \sqrt{(x-2)^2 + (y-0)^2 + (z-1)^2} \]

\[\text{dist}(P, B) = \sqrt{(x-1)^2 + (y-2)^2 + (z+2)^2} \]

\[(x-2)^2 + y^2 + (z-1)^2 = (x-1)^2 + (y-2)^2 + (z+2)^2 \]

\[x^2 - 4x + 4 + y^2 + z^2 - 2z + 1 = \]

\[= x^2 - 2x + 1 + y^2 - 4y + 4 + z^2 + 4z + 4 \]

\[\Rightarrow 2x - 4y + 6z + 4 = 0 \] (è il piano formato
da tutti i punti \(P = (x, y, z) \) che sono
equidistanti da \(A \) e \(B \))

\(P \in \mathbb{R} \) \(\Leftarrow \) \(x + 2y - z + 3 = 0 \)

\(\Rightarrow \) \(l : \left\{ \begin{array}{l}
 x + 2y - z + 3 = 0 \\
 2x - 4y + 6z + 4 = 0
\end{array} \right\} \)
(c) Determinare il raggio della circonferenza ottenuta interselando la sfera di centro
\[C = (2, 0, -4) \] e raggio 4 con il piano \(\Pi \).

Il centro \(C' \) della circonferenza è la proiezione ortogonale del centro \(C \) della sfera sul piano \(\Pi \).

\[
\text{dist}(C, C') = \text{dist}(C, \gamma)
\]
\[
= \frac{|2 + 2 \cdot 0 - (-4) + 3|}{\sqrt{1^2 + 2^2 + (-1)^2}} = \frac{9}{\sqrt{6}} = \frac{3}{2} \sqrt{6}
\]

\[
\text{dist}(C', S)^2 = \text{dist}(C, S)^2 - \text{dist}(C, C')^2
\]
\[
= 4^2 - \left(\frac{9}{\sqrt{6}} \right)^2 = 16 - \frac{81}{6} = \frac{5}{2}
\]

Quindi il raggio della circonferenza è \(\sqrt{\frac{5}{2}} \).
Osservazione: il metodo che abbiamo usato nel punto (b) ci permette anche di trovare le equazioni di altri "luoghi geometrici".

Esempio: in \mathbb{A}^3 siamo dati il punto $P = (1, -2, -1)$ e il piano π di eq.

$$\pi: 2x - y - 2z + 1 = 0.$$

Determinare l'equazione del luogo dei punti equidistanti dal punto P e dal piano π.

Sia $X = (x, y, z)$. Si ha:

$$\text{dist} (X, P) = \|X - P\| = \| (x-1, y+2, z+1) \| = \sqrt{(x-1)^2 + (y+2)^2 + (z+1)^2}$$

$$\text{dist} (X, \pi) = \frac{|2x - y - 2z + 1|}{\sqrt{4 + 1 + 4}}$$

Uguagliando queste distanze e elevando alla seconda si ottiene:
\[(x-1)^2 + (y+2)^2 + (z+1)^2 = \frac{(2x-y-2z+1)^2}{9}\]

Sviluppando i calcoli si trova, alla fine, l'equazione

\[5x^2 + 8y^2 + 5z^2 + 4xy + 8xz - 4yz - 22x + 38y + 22z + 53 = 0.\]

Questa è l'equazione cercata.

(l'è un paraboloido)