Progettazione e sintesi di circuiti digitali

Lecture 12
Fixed-point arithmetics
Binary representation of real numbers

- Problem: how to represent real numbers \(x \) in range \([a, b]\) using an \(n \)-bit binary string \(b \)
 - more real numbers then different \(n \)-bit strings
 - many real numbers map to the same string
 - all, except one at most, will be represented with an error \(e \)
Binary representation of real numbers

Definitions:

- $R(x)$: binary number representing real number x
- $V(b)$: value of binary number b

Absolute and relative error:

$$e_a = |V(R(x)) - x|, \quad e_r = \left| \frac{V(R(x)) - x}{x} \right|$$

Absolute and relative accuracy:

$$a_a = \max_{x \in [a,b]} |V(R(x)) - x|, \quad a_r = \max_{x \in [a,b]} \left| \frac{V(R(x)) - x}{x} \right|$$
Binary representation of real numbers

Example: represent any $X \in [0, 1000]$ as 10-bit binary integer, converting X to nearest integer

• Compute absolute error and accuracy when $X=512.742$

 512.742 \rightarrow nearest integer $513 = 10\ 0000\ 0001_2$

 $e_a(512.742) = |512.742 - 513| = 0.258$

 $a_a = \max e_a(X) = 0.5$

• Error and accuracy depend on function R

 — if we choose to truncate X to nearest integer less than X, then: $512.742 \rightarrow 512$

 $e_a(512.742) = |512.742 - 512| = 0.742$

 $a_a = \max e_a(X) = 1$
Binary representation of real numbers

- Resolution: \(r = \min_{b_1, b_2 \in B, b_1 \neq b_2} |V(b_1) - V(b_2)| \)
 - equal to the value of the least significant bit (LSB) of the binary code

- Example: find the resolution needed to represent \(X \) from 54 500 000 km to 4 500 000 000 km with 3% relative accuracy

 max relative error halfway between \(X_{\min} \) and \(X_{\min} + r \)

 \[
 a_r = \left| \frac{54500000 - (54500000 + 0.5 \cdot r)}{54500000 + 0.5 \cdot r} \right| = 3\% \implies r = 3370000
 \]

 number of bits required for an unsigned representation:

 \[
 n = \left\lceil \log_2 \left(\frac{X_{\max}}{r} \right) \right\rceil = \left\lceil \log_2 \left(\frac{4500}{3.37} \right) \right\rceil = \left\lceil 10.38 \right\rceil = 11
 \]
Fixed-point representation

• A **p.f** fixed-point number is an n-bit binary string (with \(n = p + f \)) coding a rational number with \(p \) bits for the integer part and \(f \) bits for the fractional part.

<table>
<thead>
<tr>
<th>weight</th>
<th>(2^{p-1})</th>
<th>(2^{p-2})</th>
<th>(...)</th>
<th>(2^0)</th>
<th>(2^{-1})</th>
<th>(...)</th>
<th>(2^{-f})</th>
</tr>
</thead>
<tbody>
<tr>
<td>code</td>
<td>(b_{n-1})</td>
<td>(b_{n-2})</td>
<td>(...)</td>
<td>(b_{n-p})</td>
<td>(b_{f-1})</td>
<td>(...)</td>
<td>(b_0)</td>
</tr>
</tbody>
</table>

• Signed numbers require one more bit
 – format **sp.f** \(\rightarrow \) \(n = p + f + 1 \)

• Resolution \(r \) set by the number \(f \) of fractional bits
 – \(r = 2^{-f} \)

• Range (for a signed number system):
 – from \(-2^p\) to \(+2^p - r\)
Fixed-point representation

• Examples of fixed-point numbers:

<table>
<thead>
<tr>
<th>Format</th>
<th>Code</th>
<th>r</th>
<th>Integer</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>1.011</td>
<td>0.125</td>
<td>11</td>
<td>1.375</td>
<td>11/8</td>
</tr>
<tr>
<td>s1.3</td>
<td>01.011</td>
<td>0.125</td>
<td>11</td>
<td>1.375</td>
<td>11/8</td>
</tr>
<tr>
<td>s1.3</td>
<td>11.011</td>
<td>0.125</td>
<td>-5</td>
<td>-0.625</td>
<td>-5/8</td>
</tr>
<tr>
<td>2.4</td>
<td>10.0111</td>
<td>0.0625</td>
<td>39</td>
<td>2.4375</td>
<td>3916</td>
</tr>
</tbody>
</table>

• Conversion of an (s)p.f code to decimal:
 – kill the binary point, then convert to integer, then multiply by the resolution r

• Conversion from decimal to (s)p.f:
 – multiply by $2^f (=1/r)$, then round to nearest integer, then convert to binary
Fixed-point representation

• Conversion examples:
 convert x=1.389 to 1.3 format:
 → multiply by $2^f (=1/r)$: $x \cdot 2^3 = 11.112$
 → round to nearest integer: $11.112 \rightarrow 11$
 → convert to n-bit binary: $11 \rightarrow 1001 \rightarrow 1.001$
 convert 1.001 (assuming 1.3 format) to decimal:
 → kill the binary point: $1.001 \rightarrow 1001$
 → convert to integer: $1001 \rightarrow 11$
 → multiply by the resolution r: $11 \cdot 2^{-3} = 1.375$
 → conversion error $e_a = |1.389 - 1.375| = 0.014$
Fixed-point representation

• Fixed-point representation is often used in applications where range and accuracy are well known (e.g., signal processing)
 – binary point placed to exploit full range
 – overflow eliminated or kept under control

• **Scaling** applied to maximize range exploitation
 – typically, X values scaled to fall between -1 and +1
 – then, **s0.f** representation can be used (with s0.15 being the most popular)
Fixed-point representation

Fixed-point system design example:

• Represent a voltage between 0 and 10V with 10mV absolute accuracy
 → p=4 bits required to represent 10V
 → for \(a_a \leq 10\text{mV} \), then \(r \leq 20\text{mV} \) (rounding to nearest integer)
 → then, \(r=2^{-6}=0.015625 \leq 0.02 \) and \(a_a=r/2=0.0078125 \)
 → a 4.6 FP format satisfies the requirements

• We can improve range exploitation if we design the FP system to have a resolution \(r=20\text{mV} \)
 → if \(r=20\text{mV} \), then \(n=\lceil \log_2(X_{\text{max}}/r) \rceil = \lceil 8.97 \rceil = 9 \) bits are required to represent the full 0 to 10V range
 → the representable range is 0 to \((2^n-1) \cdot r =511 \cdot 20\text{mV}=10.22\text{ V} \)
 → a scaling operation is implied in setting the resolution to a value different from \(2^{-f} \), with scaling factor \(S=2^{-f}/r \)
Fixed-point representation

Exercise:

• Design a fixed-point system to represent temperatures ranging from -20 °C to 80 °C with at least 0.1 °C absolute accuracy
 – assume conversion with rounding to nearest integer
 – try first without scaling
 – then, scale the temperature to minimize the number of bits required by the system
Operations on FP numbers

- Operations on FP numbers are based on normal integer arithmetics
 - FP numbers inside a circuit are represented as signed or unsigned binary integer
 - Information on (s)p.f format adopted is used to convert to and from decimal representation outside of the circuit, and to properly design the arithmetic datapath
- Different strategies to choose the length n of the FP representation
 - Fixed n: most common solution; datapath design easier; must design to prevent overflow and accuracy loss beyond specs
 - Variable n: prevents (or limits) overflow and loss of accuracy by selectively increasing the size of the datapath; circuit design more complicated
Operations on FP numbers

• Operations on FP numbers are based on normal integer arithmetics
 – FP numbers inside a circuit are represented as signed or unsigned binary integer
 – information on (s)p.f format adopted is used to convert to and from decimal representation outside of the circuit, and to properly design the arithmetic datapath

• Problems with operations on FP numbers
 – addition/subtraction: possible overflow
 – multiplication: possible overflow and loss of significant digits
Operations on FP numbers

• Addition/subtraction:
 – adding two FP numbers with the same (s)p.f format requires an (s)(p+1).f format for the result to prevent overflow for any possible value of inputs
 – when formats are different, binary point must be aligned to obtain correct result:

 $$(s)p_1.f_1 + (s)p_2.f_2 \rightarrow (s)\text{max}(p_1,p_2).\text{max}(f_1,f_2)$$

Example:
A (s3.4) + B (s5.1) = S (s5.4)
Operations on FP numbers

• Multiplication:
 – No overflow and no loss of significant digits if unsigned
 \[p_1.f_1 \times p_2.f_2 = (p_1+p_2).(f_1+f_2) \]
 – Signed
 \[sp_1.f_1 \times sp_2.f_2 = s(p_1+p_2+1).(f_1+f_2) \]
 – Typical method to keep the datapath size constant is to discard a suitable number of the rightmost (i.e., less significant) bits \(\rightarrow \) no overflow but loss of significant digits
 – If the input factors format is \(s0.f \), then the product format is \(s1.(2f) \) \(\rightarrow \) discarding the less significant \(f \) bits and the MSB brings the format back to \(s0.f \)
 • possible overflow only in one case: \((-1) \times (-1) = +1\)
Operations on FP numbers

Practical example: MAC unit of a DSP

• many DSP scale numbers to a s0.15 format
• multiplying two s0.15 numbers gives a s1.30 number
• the MAC unit is designed to accumulate up to N products without overflow and loss of digits
• the result is then rounded to get back to s0.15 format
• what should be the size of the accumulator if N=256?
Operations on FP numbers

Practical example: MAC unit of a DSP (continued)

- Max value of accumulated sum is $N \times \text{max}(P)$
- P is in s1.30 format, S requires an additional $\lceil \log_2(N) \rceil = 8$ bits, the required format is s9.30
Operations on FP numbers

VHDL model of the MAC unit

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity MAC is
 port(A,B: in signed(15 downto 0);
 CK,R: in std_logic;
 Y: out signed(15 downto 0));
end MAC;

architecture RTL of MAC is
 signal P: signed(31 downto 0);
 signal S: signed(39 downto 0);
begin -- continues on next page
Operations on FP numbers

-- continued from previous page

P <= A * B;
ACC: process
begin
 wait until CK'event and CK = '1';
 if R = '0' then
 S <= (others => '0');
 else
 -- the decimal point of S and P are aligned w.r.t. the LSB
 -- so they can be added directly
 S <= S + P;
 end if;
end process;
Y <= resize(S(S'left-1 downto 15), Y'length);
end RTL;

discard the f=15 less significant bits of S (i.e., S(14 downto 0)) and the MSB (S'left)

resize the remaining 24 bits to 16, discarding the 8 most significant bits
(but keeping the sign bit)
Operations on FP numbers

Truncating vs rounding to nearest integer

• Truncating: discarding the rightmost m bits
 – for an sp.f format, the absolute accuracy loss when truncating m (≥1) bits is \(2^{m-f-1}\)
 – hardware implementation comes for free

• Rounding to nearest integer
 – round up if the most significant bit discarded is 1
 – round down if the msb discarded is 0
 – rounding up requires to increment the result, so its hardware implementation includes an adder

– example: round .01111000 to 0.4 format \(\rightarrow .01111000\) round up by adding .00001 \(\rightarrow .1000\)