WRITE FIRST NAME, LAST NAME, AND ID NUMBER ("MATRICALA") BELOW AND READ ALL INSTRUCTIONS BEFORE STARTING WITH THE EXAM! TIME: 2.5 hours.

FIRST NAME: ...

LAST NAME: ...

ID NUMBER: ...

INSTRUCTIONS

• solutions to exercises must be in the appropriate spaces, that is:
 – Exercise 1: pag. 1, 2
 – Exercise 2: pag. 3, 4, 5
 – Exercise 3: pag. 6, 7
 – Exercise 4: pag. 8, 9, 10

Solutions written outside the appropriate spaces (including other papersheets) will not be considered.

• the use of notes, books, or any other material is forbidden and will make your exam invalid;

• electronic devices (smartphones, calculators, etc.) must be turned off; their use will make your exam invalid;

• this booklet must be returned in its entirety.
Exercise 1 [8 points]

1. Discuss which are the main ingredients of a learning problem, how learning can be formulated as an optimisation problem, and how the objective of learning can be encoded.

2. Define the concept of model class and a way to measure its complexity.

3. Discuss the role of model class complexity on the learning problem. In the context of PAC learning, provide a bound on sample complexity for finite model classes with loss function $\ell : \mathcal{H} \times Z \rightarrow [0, 1]$.

[Solution: Exercise 1]
[Solution: Exercise 1]
[Solution: Exercise 1]
Exercise 2 [8 points]

1. Describe and motivate the regression problem in Machine Learning.

2. Provide an example of linear regression problem where the hypothesis class is
 \[Y = X\theta \quad Y \in \mathbb{R}^n \quad \theta \in \mathbb{R}^d \]
 in which it is of interest to perform variable selection and discuss how this can be
 solved using regularisation, defining explicitly the cost function to be minimised as
 a function of the usual regularisation parameter \(\lambda \).

3. Let \(\lambda \) be the regularization parameter in the sparse regression problem discussed
 above. Draw a typical plot (regularisation path) of how the estimated coefficients \(\hat{\theta}_i \)
 (entries of the parameter vector \(\theta \)) vary as a function the regularisation parameter \(\lambda \)
 (one line for each \(\hat{\theta}_i, i = 1, \ldots, d \), assuming \(d = 4 \)).
[Solution: Exercise 2]
[Solution: Exercise 2]
Exercise 3 [8 points]

Consider a neural network with two hidden layers, inputs x, and output y, where the first hidden layer has 5 nodes (say ξ_i, $i = 1,..,5$) and the second hidden layer 1 node (say z_1) where

$$\xi_i = 1(w^\top_1,i x + b_i) \quad i = 1,..,5$$

and

$$z_1 = 1(w^\top_2,1 \xi - 4.5)$$

where $w^\top_2,1 = [1 1 1 1 1]$, $1(a)$ is the indicator function

$$1(a) = \begin{cases} 1 & a \geq 0 \\ 0 & a < 0 \end{cases}$$

and $y = z_1$.

1. Draw a schematic picture of the neural network

2. Assuming the network is trained for the binary classification problem with the data depicted in figure below (the input $x \in \mathbb{R}^2$ are the coordinates of the points while the output y are the labels), say whether there is a combination of weights for which the training error is exactly equal to zero (i.e. the network perfectly classifies the training data). Note: you do not need to find the exact weights.

3. Interpret, and illustrate in the picture below, the two hidden layers in the context of linear classification on training data.
[Solution: Exercise 3]
[Solution: Exercise 3]
Exercise 4 [8 points]

You want to cluster the points in the figure below using \(k \)-means with \(k = 2 \).

1. Is there a way to cluster the points using \(k \)-means so that in the solution the two clusters corresponds to the two sets with different marks (triangles, squares)? Given a short explanation for your answer.

2. Before applying clustering, you can apply a transformation to the dataset. Describe a transformation such that the application of \(k \)-means with \(k = 2 \) to the transformed datasets results in two clusters corresponding to the two sets with different marks, and plot the transformed dataset.

3. Briefly describe the execution of \(k \)-means on the transformed dataset (note: choose the first centers so that only few iterations are required and that the final clustering corresponds to the two sets with different marks).

[Solution: Exercise 4]
[Solution: Exercise 4]
[Solution: Exercise 4]