Progettazione e sintesi di circuiti digitali

Course introduction – part2

VLSI circuits: key concepts
VLSI circuits and PSCD

• Review of the concept of integrated circuit
 – from semiconductor device to monolithic circuit
 – from small-scale (SSI) to very-large-scale (VLSI) integrated circuit

• VLSI circuit design problem
 – taming complexity and design goals
 – design methodology
 – computer-aided design (CAD) tools
From device to circuit

device (MOSFET)

logic gate

logic circuit
From circuit to system

Put a few million of logic gates together

⇒ Very Large Scale Integrated Circuit

printed circuit board (PCB)

complete system

packaged chip
Different kinds of design involved

• Technology development
 – design a process that allows the fabrication of complementary MOSFET devices
 – decreasing minimum feature size \Rightarrow new process roughly every two years
Different kinds of design involved

• Circuit design
 – starts from specifications and ends with a set of geometrical masks (layout) used for circuit fabrication
 – procedure that follows an ordered set of steps (design flow)

SPECIFICATIONS
• design a circuit for MP3 compression
 • power ≤ 250 mW
 • area ≤ 12 mm²
 • ...

SPECIFICATIONS
• design a circuit for MP3 compression
 • power ≤ 250 mW
 • area ≤ 12 mm²
 • ...

A. Neviani - P.S.C.D. 6
Different kinds of design involved

• System design
 – assemble different parts (sub-systems) to realize the final product

 touchscreen

 VLSI circuits

 loudspeaker, microphone, sensors, …

 PCB

 full system
VLSI ingredients and recipe

specifications

SPECIFICATIONS
• design a circuit for MP3 compression
• ...

VLSI design procedure (flow)

silicon wafers

CMOS fabrication process

circuit layout

VLSI/ULSI chip

wafer with fabricated dies

A. Neviani - P.S.C.D.
What this class is about

• How to transform a product idea into a VLSI circuit

• Study a design methodology to guide the designer
 – from product specification
 – to physical design tape-out

• Learn to use the CAD tools that make the design flow a semi-automated process
Key concepts of the course 1/3

• A design methodology is required to:
 – control design complexity (millions of gates)
 – obtain predictable results
 – fit time-to-market requirements
 – reduce non-recurrent costs

• CAD tools amplify the designer’s capability to:
 – create a circuit description ⇒ capture
 – move to a lower abstraction level ⇒ synthesis
 – test the correctness of a design ⇒ verification
Key concepts of the course 2/3

• Abstraction levels:

same circuit described with increasing level of detail

• Domains of representation:

\[S = A \oplus B \oplus C_i \]
\[C_o = (A \oplus B)C_i + AB \]

behavioral structural physical
• Hardware Description Language (HDL):
 – captures the description of a circuit at different abstraction levels and representation domains
 – backbone of the digital design flow

```vhdl
entity FULL_ADDER is
  port (A, B, CI: in Bit;
       CO, S: out Bit);
end FULL_ADDER;
architecture BHV of FULL_ADDER is
  signal P: Bit;
begin
  P  <= A xor B;
  S  <= P xor CI;
  CO <= P and CI or A and B;
end BHV;
```
Course plan

• Review of basic digital design flow
 – combinational and sequential gates, synchronous FSM, binary arithmetics

• Hardware Description Languages
 – VHDL syntax and coding style

• CAD tools for VLSI design
 – theory and lab experience with CAD tools for design capture, simulation and synthesis

• Examples of circuits for digital signal processing