Comparison between PDs: geometrical configuration, main components and the mechanical aortic valve used for the hydrodynamic tests.
a) HER Pulse Duplicator: Pump (P), Ventricle Chamber (VC), Aortic Chamber (AC), Aortic Compliance (ACC), heater (H), systemic Compliance Chamber (CC), Peripheral Resistances (PR), Atrial Tank (AT).
b) ViVitro CEL PD: SuperPump (P), Ventricle and Aortic Chamber (AC and VC), Atrium Chamber (AtC), Flow meter probe (F), Peripheral resistance controller (R).
c) Bileaflet Mechanical Aortic Valve, On-X.
Pressure (in aorta and in ventricle) and flow measured at CO 4.0 l/min for (a) the HER Lab PD and (b) for CEL PD. Tested valve was On-X of size 25 mm. All data are averaged over 10 cycles.
Comparison between test results

- Differences were measured in terms of ΔP and EOA

The ΔP measured in HER Lab PD significantly differ from the one measured in Vivitro PD e.g.: for $CO 4.0 l/min$ ΔP is 2.4 mmHg and 9.9 mmHg for Vivitro and HER Lab PD, respectively

In this case the different set up of aorta compliance plays a fundamental role on the final outcomes, since the Vivitro PD worked with a compliant aortic root, whilst HER Lab PD considered a completely rigid aorta. The difference of compliance amplifies the ΔP and then the EOA.

For the present case, results give $EOA = 4.0$ cm2 for Vivitro PD test and $EOA = 2.1$ cm2 for HER Lab PD.

Standard requirements in terms of minimum EOA (equal to 1.25 cm2 for 25 mm) are satisfied in both tests, BUT the ratio between measured and minimum EOA is much higher for Vivitro than for HER PD, depicting a much smaller hemodynamic performance for the same valve when tested at HER Lab.
Comparison between test results

- Absence of measured (volume of) leakage through the On-X valve into HER Lab PD!

Usually, mechanical valves exhibit mild leakage to promote leaflets washing thus preventing clots formations

Possible explanation: the absence of leakage may be due to a reduction of the transvalvular pressure gradient for the oscillating phenomena along the ventricular-flowmeter system that rise in the valve closing phase

To be investigated!